Las posibles combinaciones al sumar dos bits son
100110101 + 11010101 ——————————— 1000001010
Operamos como en el sistema decimal: comenzamos a sumar desde la derecha, en nuestro ejemplo, 1 + 1 = 10, entonces escribimos 0 en la fila del resultado y llevamos 1 (este "1" se llama arrastre). A continuación se suma el acarreo a la siguiente columna: 1 + 0 + 0 = 1, y seguimos hasta terminar todas la columnas (exactamente como en decimal).
El algoritmo de la resta en binario es el mismo que en el sistema decimal. Pero conviene repasar la operación de restar en decimal para comprender la operación binaria, que es más sencilla. Los términos que intervienen en la resta se llaman minuendo, sustraendo y diferencia.
Las restas básicas 0-0, 1-0 y 1-1 son evidentes:
La resta 0 - 1 se resuelve, igual que en el sistema decimal, tomando una unidad prestada de la posición siguiente: 10 - 1 = 1 y me llevo 1, lo que equivale a decir en decimal, 2 - 1 = 1. Esa unidad prestada debe devolverse, sumándola, a la posición siguiente. Veamos algunos ejemplos:
Restamos 17 - 10 = 7 (2=345) Restamos 217 - 171 = 46 (3=690) 10001 11011001 -01010 -10101011 —————— ————————— 01111 00101110
A pesar de lo sencillo que es el procedimiento, es fácil confundirse. Tenemos interiorizado el sistema decimal y hemos aprendido a restar mecánicamente, sin detenernos a pensar en el significado del arrastre. Para simplificar las restas y reducir la posibilidad de cometer errores hay varias soluciones:
100110011101 1001 1001 1101 -010101110010 -0101 -0111 -0010 ————————————— = ————— ————— ————— 010000101011 0100 0010 1011
1011011 1011011 -0101110 C2 de 46 = 1010010 +1010010 ———————— ———————— 0101101 10101101
En el resultado nos sobra un bit, que se desborda por la izquierda. Pero, como el número resultante no puede ser más largo que el minuendo, el bit sobrante se desprecia.
Un último ejemplo: vamos a restar 219 - 23 = 196, directamente y utilizando el complemento a dos:
11011011 11011011 -00010111 C2 de 23 = 11101001 +11101001 ————————— ————————— 11000100 111000100
Y, despreciando el bit que se desborda por la izquierda, llegamos al resultado correcto: 11000100 en binario, 196 en decimal.
El algoritmo del producto en binario es igual que en números decimales; aunque se lleva cabo con más sencillez, ya que el 0 multiplicado por cualquier número da 0, y el 1 es el elemento neutro del producto.
Por ejemplo, multipliquemos 10110 por 1001:
10110 1001 ————————— 10110 00000 00000 10110 ————————— 11000110
En sistemas electrónicos, donde se suelen utilizar números mayores, no se utiliza este método sino otro llamado algoritmo de Booth.
La división en binario es similar a la decimal, la única diferencia es que a la hora de hacer las restas, dentro de la división, estas deben ser realizadas en binario. Por ejemplo, vamos a dividir 100010010 (274) entre 1101 (13):
100010010 |1101 —————— - 0000 010101 ——————— 10001 - 1101 ——————— 01000 - 0000 ——————— 10000 - 1101 ——————— 00111 - 0000 ——————— 01110 - 1101 ——————— 00001
Binario a decimal
Para realizar la conversión de binario a decimal, realice lo siguiente:
Ejemplos:
1*(2) elevado a (0)=1 0*(2) elevado a (1)=0 1*(2) elevado a (2)=4 0*(2) elevado a (3)=0 1*(2) elevado a (4)=16 1*(2) elevado a (5)=32 La suma es: 53
1*(2) elevado a (0)=1 1*(2) elevado a (1)=2 1*(2) elevado a (2)=4 0*(2) elevado a (3)=0 1*(2) elevado a (4)=16 0*(2) elevado a (5)=0 0*(2) elevado a (6)=0 1*(2) elevado a (7)=128 La suma es: 151
1*(2) elevado a (0)=1 1*(2) elevado a (1)=2 1*(2) elevado a (2)=4 0*(2) elevado a (3)=0 1*(2) elevado a (4)=16 1*(2) elevado a (5)=32 La suma es: 55
Se divide el número decimal entre 2 cuyo resultado entero se vuelve a dividir entre 2 y así sucesivamente. Una vez llegados al 1 indivisible se cuentan el último cociente, es decir el uno final (todo número binario excepto el 0 empieza por uno), seguido de los residuos de las divisiones subsiguientes. Del más reciente hasta el primero que resultó. Este número será el binario que buscamos. A continuación se puede ver un ejemplo con el número decimal 100 pasado a binario.
100 |_2 0 50 |_2 0 25 |_2 --> 1001100100 1 12 |_2 0 6 |_2 0 3 |_2 1 1
Otra forma de conversión consiste en un método parecido a la factorización en
números
primos. Es relativamente fácil dividir cualquier número entre 2. Este método
consiste también en divisiones sucesivas. Dependiendo de si el número es par o
impar, colocaremos un cero o un uno en la columna de la derecha. Si es impar, le
restaremos uno y seguiremos dividiendo por dos, hasta llegar a 1. Después sólo
nos queda tomar el último resultado de la columna izquierda (que siempre será
1) y todos los de la columna de la derecha y ordenar los dígitos de abajo a
arriba. Y luego se haría un cuadro con las potencias con el resultado.
Ejemplo:
100|0 50|0 25|1 --> 1, 25-1=24 y seguimos dividiendo por 2 12|0 6|0 3|1 1|1 --> 1001100100
Y también tenemos otro método el método de distribución en el que distribuimos el número decimal y podemos tener el resultado en binario, trabaja de la siguiente manera tenemos el número 151 lo que tenemos que hacer es distribuir este número buscando el número más próximo; en este caso es 128 así que en la casilla donde hay capacidad de contener el número que tenemos lo vamos marcando. y en las casillas que no empleamos las marcaremos con un 0.
Ejemplo:
2^0= 1|1 2^1= 2|1 2^2= 4|1 2^3= 8|0 2^4= 16|1 2^5= 32|0 2^6= 64|0 2^7= 128|1 128+16+4+2+1=151 2^8= 256|0
Y sucesivos.
Para realizar la conversión de binario a octal, realice lo siguiente:
1) Agrupe la cantidad binaria en grupos de 3 en 3 iniciando por el lado derecho. Si al terminar de agrupar no completa 3 dígitos, entonces agregue ceros a la izquierda.
2) Posteriormente vea el valor que corresponde de acuerdo a la tabla:
Número en binario | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
---|---|---|---|---|---|---|---|---|
Número en octal | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
3) La cantidad correspondiente en octal se agrupa de izquierda a derecha.
Ejemplos:
111 = 7 110 = 6 Agrupe de izquierda a derecha: 67
111 = 7 001 = 1 11 entonces agregue un cero, con lo que se obtiene 011 = 3 Agrupe de izquierda a derecha: 317
011 = 3 000 = 0 1 entonces agregue 001 = 1 Agrupe de izquierda a derecha: 103.
Cada dígito octal se lo convierte en su binario equivalente de 3 bits y se juntan en el mismo orden. Ejemplo:
Para realizar la conversión de binario a hexadecimal, realice lo siguiente:
1) Agrupe la cantidad binaria en grupos de 4 en 4 iniciando por el lado derecho. Si al terminar de agrupar no completa 4 dígitos, entonces agregue ceros a la izquierda.
2) Posteriormente vea el valor que corresponde de acuerdo a la tabla:
Número en binario | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Número en hexadecimal | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
3) La cantidad correspondiente en hexadecimal se agrupa de izquierda a derecha.
Ejemplos:
1010 = A 1011 = B 1 entonces agregue 0001 = 1 Agrupe de izquierda a derecha: 1BA
0101 = 5 1111 = F 110 entonces agregue 0110 = 6 Agrupe de izquierda a derercha: 6F5
Hexadecimal a binario
Ídem que para pasar de hexadecimal a binario, solo que se remplaza por el equivalente de 4 bits, como de octal a binario.
Decimal | Binario | Hexadecimal | Octal | BCD | Exceso 3 | Gray o Reflejado |
---|---|---|---|---|---|---|
0 | 0000 | 0 | 0 | 0000 | 0011 | 0000 |
1 | 0001 | 1 | 1 | 0001 | 0100 | 0001 |
2 | 0010 | 2 | 2 | 0010 | 0101 | 0011 |
3 | 0011 | 3 | 3 | 0011 | 0110 | 0010 |
4 | 0100 | 4 | 4 | 0100 | 0111 | 0110 |
5 | 0101 | 5 | 5 | 0101 | 1000 | 0111 |
6 | 0110 | 6 | 6 | 0110 | 1001 | 0101 |
7 | 0111 | 7 | 7 | 0111 | 1010 | 0100 |
8 | 1000 | 8 | 10 | 1000 | 1011 | 1100 |
9 | 1001 | 9 | 11 | 1001 | 1100 | 1101 |
10 | 1010 | A | 12 | |||
11 | 1011 | B | 13 | |||
12 | 1100 | C | 14 | |||
13 | 1101 | D | 15 | |||
14 | 1110 | E | 16 | |||
15 | 1111 | F | 17 |