1. Earth orbits the Sun in 1 year. It is 1 A.U from the Sun. a) Neptune is 30.6 AU from the Sun. How long is the year for Neptune? b) Mars orbits the Sun in 1.87 Earth years. How far is Mars from the Sun? Answer: a) 169 years. b) 1.52 AU.

2. The moon Io orbits Jupiter in 1.77 days, and is 4.2×10^8 m from the planet. The moon Europa also orbits Jupiter, and is 6.7×10^8 m from the planet. How many days does it take Europa to orbit once? Answer: 3.57 days.

3. A satellite is in a circular orbit around an unknown planet. The satellite has a speed of 1.70×10^4 m/s, and the radius of the orbit is 5.25×10^6 m. A second satellite also has a circular orbit around this same planet. The orbit of this second satellite has a radius of 8.60×10^6 m. What is the orbital speed of the second satellite? Answer: 1.33×10^4 m/s

4. A distance of 2.0 m separates two objects of equal mass. If the gravitational force between them is 1.04×10^{-8} N, find the mass of each object. Answer: 25 kg.

5. What is the gravitational field strength at a point 6.38×10^6 m above Earth’s surface? At what distance from Earth’s surface is the acceleration due to gravity 7.33 m/s²? Data: G, M_{Earth} and R_{Earth}. Answer: a) 2.45 m/s². b) 9.97×10^5 m.

6. At what altitude above the Earth’s surface would your weight be one-half of what it is at the Earth's surface? Data: g_0 and R_{Earth}. Answer: 2650 km.

7. On the surface of planet Y, which has a mass of 4.83×10^{24} kg, a 30 kg object weighs 50 N. What is the radius of the planet? Data: G. Answer: 1.39 \times 10^7 m

8. A satellite orbits at a height of 3185 km above the surface of the Earth. Determine the speed and orbital period of the satellite. Data: G, M_{Earth} and R_{Earth}. Answer: a) 6641 m/s. b) 2.6 h.

9. NASA places a 100.0 kg satellite in a circular orbit just above the surface of the Earth. How much gravitation force does the Earth exert on the satellite? What is the satellite’s orbital speed? What is the satellite’s orbital period? Data: G, M_{Earth} and R_{Earth}. Answer: a) 983 N. b) 7912 m/s. c) 5059 s.

10. A satellite is in a circular orbit 300 km above the surface of the Earth. Find its speed and its period of revolution. Data: g_0 and R_{Earth}. Answer: a) 7721 m/s. b) 90,4 min.

11. A 150 kg object is launched into orbit at a height of 12800 km above the Earth’s surface. a) What is the weight of the satellite on the surface of the Earth? b) What is the weight of the satellite in orbit? c) What is the speed of the satellite in orbit? Data: g_0, G, M_{Earth} and R_{Earth}. Answer: a) 1470 N. b) 160 N c) 4500 m/s
12. Given the following data: Mass of Mars: 6.42×10^{23} kg, mass of the Sun: 1.991×10^{30} kg, mars’s distance from the Sun: 2.279×10^{11} m a) Find the velocity with which Mars moves around the Sun. b) How long in days does it take Mars to make one revolution about the Sun? c) What is the force of gravity experienced by Mars from the Sun? Data: G. Answer: a) 2.4×10^4 m/s. b) 691 días. c) 1.64×10^{24} N.

13. A satellite is placed in orbit 6.00×10^5 m above the surface of Jupiter. Jupiter has a mass of 1.90×10^{27} kg and a radius of 7.14×10^7 m. Data: G. Find the orbital speed of the satellite. Answer: 4.20×10^4 m/s.

14. The period of the Moon is approximately 27.2 days. Determine the radius of the Moon’s orbit and the orbital speed of the Moon. Data: G and M_{Earth}. Answer: $r = 3.82 \times 10^6$ m; $v = 1.02 \times 10^3$ m/s

15. Io, a satellite of Jupiter, has an orbital period of 1.77 days and an orbital radius of 4.22×10^5 km. From these data and G, determine the mass of Jupiter. Answer: 1.9×10^{27} kg.

16. The Earth travels around the Sun once per year in an approximately circular orbit whose radius is 1.50×10^{11} m. Determine: a) The mass of the Sun. b) The orbital speed of the Earth. Data: G. Answer: a) 2.00×10^{30} kg. b) 2.98×10^4 m/s.

17. A geosynchronous satellite is one which stays above the same part of the Earth all of the time (in other words, it's period is the same as that of the earth). Data: G, M_{Earth} and R_{Earth}. How high above the surface of the Earth is this satellite? Answer: 3.59×10^7 m.

18. Venus rotates slowly about its axis, the period being 243 days. The mass of Venus is 4.87×10^{24} kg. Determine the radius for a geosynchronous orbit around Venus. Data: G. Answer: 5.57×10^6 m

19. At what distance above the surface of the Earth would a satellite have a period of 5 h? What would be the satellite’s linear speed at this distance? Data: g_0 and R_{Earth}. Answer: a) 8.47×10^6 m. b) 5180 m/s.

20. On July 19, 1969, Apollo 11’s orbit around the Moon was adjusted to an average altitude of 111 km. The radius of the Moon is 1785 km and the mass of the Moon is 7.36×10^22 kg. Data: G. a) At what velocity did it orbit the Moon? b) How many minutes did it take to orbit once? Answer: a) 1610 m/s. b) 123 min.

21. A satellite has a mass of 5850 kg and is in a circular orbit 4.1×10^5 m above the surface of the planet. The period of the orbit is two hours. The radius of the planet is 4.15×10^6 m. What is the weight of the satellite when it is at rest on the planet’s surface? Data: G. Answer: 2.45×10^4 N

Data: $G = 6.67 \times 10^{-11}$ N·m²/kg²; $M_{earth} = 5.98 \times 10^{24}$ kg, $R_{earth} = 6.37 \times 10^6$ m $g_0 = 9.8$ m/s²